Computational bounds on polynomial differential equations
نویسندگان
چکیده
منابع مشابه
Computational bounds on polynomial differential equations
In this paper we study from a computational perspective some properties of the solutions of polynomial ordinary differential equations. We consider elementary (in the sense of Analysis) discrete-time dynamical systems satisfying certain criteria of robustness. We show that those systems can be simulated with elementary and robust continuous-time dynamical systems which can be expanded into full...
متن کاملComputational complexity of solving polynomial differential equations over unbounded domains
In this paper we investigate the computational complexity of solving ordinary differential equations (ODEs) y′ = p(y) over unbounded time domains, where p is a vector of polynomials. Contrarily to the bounded (compact) time case, this problem has not been well-studied, apparently due to the “intuition” that it can always be reduced to the bounded case by using rescaling techniques. However, as ...
متن کاملOn polynomial solutions of differential equations
A general method of obtaining linear differential equations having polynomial solutions is proposed. The method is based on an equivalence of the spectral problem for an element of the universal enveloping algebra of some Lie algebra in the " projectivized " representation possessing an invariant subspace and the spectral problem for a certain linear differential operator with variable coeffici...
متن کاملComputability with Polynomial Differential Equations
In this paper, we show that there are Initial Value Problems defined with polynomial ordinary differential equations that can simulate universal Turing machines in the presence of bounded noise. The polynomial ODE defining the IVP is explicitly obtained and the simulation is performed in real time.
متن کاملPolynomial solutions of differential equations
A new approach for investigating polynomial solutions of differential equations is proposed. It is based on elementary linear algebra. Any differential operator of the form L(y) = k=N ∑ k=0 ak(x)y, where ak is a polynomial of degree ≤ k, over an infinite ground field F has all eigenvalues in F in the space of polynomials of degree at most n, for all n. If these eigenvalues are distinct, then th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics and Computation
سال: 2009
ISSN: 0096-3003
DOI: 10.1016/j.amc.2009.04.055